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Abstract. The Lie algebra L(�) of generalized and point symmetries of the equations in the Toda
hierarchy is shown to be a semidirect sum of two infinite-dimensional Lie algebras, one perfect,
the other Abelian. In the continuous limit the structure of the Lie algebra changes: a contraction
occurs with the lattice spacing as the contraction parameter. In particular, for the Toda equation
itself, a set of five elements, involving both point symmetries and generalized ones, contracts to
the point symmetry algebra of the potential KdV equation.

1. Introduction

The purpose of this paper is to study the infinite-dimensional Lie algebra of point symmetries
and higher symmetries of the Toda hierarchy of differential–difference equations [5, 14, 28].
Special emphasis will be on three equations in this hierarchy. The first is the Toda system

ȧn = an(bn − bn+1) ḃn = an−1 − an (1.1)

or equivalently the Toda equation

ün = eun−1−un − eun−un+1 . (1.2)

The second is the Volterra equation

ȧn = an(an−1 − an+1) (1.3)

and the third is a higher Volterra equation

ȧn = an{an−1(an + an−1 + an−2 − 6) − an+1(an+2 + an+1 + an − 6)}. (1.4)

The point symmetries of the Toda equation were obtained and studied in earlier
papers [16, 19]. Point symmetries and higher symmetries of the entire Toda hierarchy were
obtained [17] using the Lax pair, i.e. the integrability properties of the hierarchy.

This paper is part of a program, the aim of which is to use Lie theory to study symmetries
of discrete equations. The equations are difference equations on a regular lattice. Previous
studies have shown [16, 19, 20, 26] that for difference equations the class of point symmetries
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is somewhat restricted. Many interesting symmetries are obtained only if one considers
simultaneous group actions on a finite, or infinite, set of points on the lattice [9, 13, 18] rather
than just at one point.

The main result of this paper is that we analyse the infinite-dimensional Lie algebras
of point and generalized symmetries of the Toda system. In particular, we show that the
continuous limit from a difference equation to a differential one corresponds to a Lie algebra
contraction.

Lie algebra contractions were first introduced by Inönü and Wigner [11] to study the
relation between relativistic and nonrelativistic theories when the velocity of light c satisfies
c → ∞. The Lorentz group then ‘contracts’ to the Galilei one. A large body of literature now
exists on Lie algebra contractions (see [12, 23, 25] and references therein). The contraction
parameter in various applications has been the speed of light, Planck’s constant, the ‘radius’
of a space of constant positive or negative curvature, the eccentricity of an ellipse in a nuclear
model [4], and others.

In our case the contraction parameter is the lattice spacing h. The infinite-dimensional Lie
algebra L(�) of all symmetries of the difference equation contracts to an infinite-dimensional
algebra L(D) of symmetries of the differential equation. The crucial new element is that a
finite subset S ⊂ L(�) contracts to a subalgebra Lp of L(D), where Lp is the Lie algebra
of point symmetries, while the subset S does not form a Lie algebra. It is not closed under
commutation and it contains both point symmetries and generalized symmetries of the discrete
equation.

In section 2 we present the symmetries of the Toda hierarchy in a form adapted to our
needs. We reproduce some known results [17] to make this paper self-contained. Section 3
is devoted to the structure of the Lie algebra L(�). To obtain the commutation relations
we make use of the integrability properties of the hierarchy [8, 22]. We use the spectral
transform to relate the nonlinear evolution equations studied to linear equations for the
reflection coefficient. Symmetries acting in the solution space of the evolution equation are
transformed into symmetries acting in the space of the reflection coefficient. These turn out
to be much simpler to deal with. In section 4 we introduce the limiting procedure, taking the
Toda equation into the potential Korteweg–de Vries equation and both the Volterra and higher
Volterra equation into the Korteweg–de Vries equation itself. The Lie algebras are subjected to
the same limiting procedure. Explicitly we present the continuous limits of those symmetries
that go into point ones.

2. The Toda hierarchy and its symmetries

The Toda hierarchy is given by the set of nonlinear differential difference equations(
ȧn
ḃn

)
= f1(L, t)

(
an(bn − bn+1)

an−1 − an

)
(2.1)

associated with the discrete Schrödinger spectral problem

ψ(n − 1, t; λ) + bnψ(n, t; λ) + anψ(n + 1, t; λ) = λψ(n, t; λ). (2.2)

Above, f1(L, t) is an entire function of its first argument, the recursion operator L, given by

L
(
pn

qn

)
=

(
pnbn+1 + an(qn + qn+1) + (bn − bn+1)sn

bnqn + pn + sn−1 − sn

)
(2.3)

where sn is a solution of the nonhomogeneous first-order equation

sn+1 = an+1

an
(sn − pn). (2.4)
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For any equation of the hierarchy (2.1) we can write down an explicit evolution equation for
the function ψ(n, t; λ) [2, 3] such that λ does not evolve in time. We impose the following
boundary conditions:

lim
|n|→∞

an − 1 = lim
|n|→∞

bn = lim
|n|→∞

sn = 0 (2.5)

on the fields an, bn and sn. We can then associate with equation (2.2) a spectrum defined in
the complex plane of the variable z(λ = z + z−1):

{R(z, t), z ∈ C1; zj , cj (t), |zj | < 1, j = 1, 2, . . . , N} (2.6)

where R(z, t) is the reflection coefficient, C1 is the unit circle in the complex z plane, zj
are isolated points inside the unit disk and cj are some complex functions of t related to the
residues of R(z, t) at the poles zj . When an, bn and sn satisfy the boundary conditions (2.5),
the spectral data defines the potentials in a unique way.

Thus, there is a one-to-one correspondence between the evolution of the potentials (an,
bn) of the discrete Schrödinger spectral problem (2.2), given by equation (2.1) and that of the
reflection coefficient R(λ, t), given by

dR(z, t)

dt
= µf1(λ, t)R(z, t) µ = z−1 − z. (2.7)

In equations (2.7) and below, d
dy denotes the total derivative with respect to y.

The Toda system is obtained from equation (2.1) by choosing f1(λ, t) = 1 and thus the
evolution equation of the reflection coefficient is given by

dR(z, t)

dt
= µR(z, t). (2.8)

The Toda equation (1.2) is obtained from the Toda system by setting

bn = u̇n an = eun−un+1 . (2.9)

The Volterra (1.3) and higher Volterra (1.4) equations are obtained from equation (2.1) by
setting bn = 0. The Toda hierarchy (2.1) then reduces to what from now on we will call the
Volterra hierarchy:

ȧn = g1(L̃, t){an(an−1 − an+1)} (2.10)

where we have

L̃pn = an(pn + pn+1 + sn−1 − sn+1) (2.11)

with sn given by equation (2.4). In correspondence with any equation of the class (2.10) we can
define the evolution of the reflection coefficient R(z, t) of the associated Schrödinger spectral
problem (2.2), given by

dR(z, t)

dt
= µλg1(λ

2, t)R(z, t). (2.12)

The Volterra equation (1.3) is obtained for g1(λ
2, t) = 1 while the higher Volterra (1.4) is

obtained for g1(λ
2, t) = λ2 − 4.

The symmetries for any equation of the Toda (2.1) and Volterra (2.10) hierarchies are
provided by all flows commuting with the equations themselves. An infinite number of such
symmetries is provided by the equations(

an,εk
bn,εk

)
= Lk

(
an(bn − bn+1)

an−1 − an

)
(2.13)

in the case of the Toda system equations (1.1) and

an,εk = (L̃)k {an(an−1 − an+1)} (2.14)
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for the Volterra hierarchy. Here k is any positive integer and εk is a group parameter. From
the point of view of the spectral problem (2.2) the equations above correspond to isospectral
deformations, i.e., we have λεk = 0. For any εk , the solution of the Cauchy problem for
equation (2.13) provides a solution of one of the Toda hierarchy equations (an(εk), bn(εk)) in
terms of the initial condition (an(εk = 0), bn(εk = 0)) (and similarly equation (2.14) for the
Volterra equation). The group transformation corresponding to the group parameter εk can
usually be written explicitly only for a few values of k. In all other cases one can just use the
symmetries (2.13) to do, for example, symmetry reduction and to reduce the equation under
consideration to an ordinary differential equation, or possibly a functional one. The proof of the
validity of equation (2.13) is easily given by taking into account the one-to-one correspondence
between the equation and the spectrum (2.6), under the asymptotic conditions (2.5). In fact, in
such a case we can biunivocally associate with both the equation (2.1) and the symmetries (2.13)
an evolution of the reflection coefficient. In the case of the symmetries (2.13), we have

dR

dεk
= µλkR. (2.15)

It is easy to prove that the flows (2.7) and (2.15) commute and hence the same must be true
for the corresponding equations for the fields ((2.1) and (2.13)). This has also been verified
directly for low values of k. The results for the Volterra hierarchy are quite analogous, but the
evolution of the reflection coefficient for equation (2.14) is given by

dR

dεk
= µλ2k+1R. (2.16)

We can extend the class of symmetries by considering nonisospectral deformations of the
spectral problem (2.2) [14]. Thus for the Toda hierarchy we obtain(
an,εk
bn,εk

)
= f2(L, t)

(
an(bn − bn+1)

an−1 − an

)
+ Lk

(
an[(2n + 3)bn+1 − (2n − 1)bn]

b2
n − 4 + 2[(n + 1)an − (n − 1)an−1]

)
(2.17a)

where the function f2(L, t) is obtained as a solution of the differential equation:

f2(L, t)t = Lk

[
(L2 − 4)

∂f1(L, t)

∂L + Lf1(L, t)

]
. (2.17b)

Thus f2(L, t) is expressed in terms of the function f1(L, t) where f1 defines the equation
under consideration. Similarly in the case of the Volterra hierarchy, we have

an,εk = g2(L̃, t)
[
an(an−1 − an+1)

]
+ L̃k[an(an − (n − 1)an−1 + (n + 2)an+1 − 4)]

(2.18a)

with

g2(L̃, t)t = L̃k

[
L̃(L̃ − 4)

dg1(L̃, t)

dL̃ + (L̃ − 2)g1(L̃, t)

]
. (2.18b)

In correspondence to equation (2.17a) we have the evolution of the reflection coefficient (2.6),
given by

dR

dεk
= µf2(λ, t)R λεk = µ2λk (2.19)

while for equation (2.18a) we have

dR

dεk
= µλg2(λ

2, t)R λεk = 1
2µ

2λ2k+1. (2.20)
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As in the case of isospectral symmetries (2.13) and (2.14), we must prove that the nonisospectral
flows (2.17a) and (2.18a) commute with the corresponding evolution equations (2.1) and (2.10).
This is reduced to an easier task, namely showing that the flows (2.19) and (2.20) in the space of
the reflection coefficients commute with the evolution equations (2.7) and (2.12), respectively.

In addition to the above two hierarchies of symmetries (2.13) and (2.17a) for the Toda
hierarchy, we can construct two further symmetries, which, however, do not satisfy the
asymptotic boundary conditions (2.5). They are(

an,ε
bn,ε

)
= f3(L, t)

(
an(bn − bn+1)

an−1 − an

)
+

(
0
1

)
(2.21)

(
an,ε
bn,ε

)
= f4(L, t)

(
an(bn − bn+1)

an−1 − an

)
+

(
2an
bn

)
(2.22)

where the functions f3(L, t) and f4(L, t) are to be determined directly for each equation of
the hierarchy. In the case of the Volterra hierarchy we have only one exceptional symmetry,
given by

an,ε = g3(L̃, t)[an(an−1 − an+1)] + an (2.23)

where, as for the case of equations (2.21) and (2.22), the function g3(L̃, t) is to be determined
directly for each equation of the hierarchy. As these exceptional symmetries do not satisfy the
asymptotic boundary conditions (2.5), we cannot write a corresponding evolution equation for
the reflection coefficient (2.6).

Let us now write down the lowest-order symmetries for the specific equations we are
treating in detail, i.e. the Toda equation (1.1), the Volterra equation (1.3) and the higher Volterra
equation (1.4). In the case of the Toda equation (1.2) the symmetries are obtained from those of
the Toda system by using transformation (2.9). The symmetries of the Toda lattice and the Toda
system corresponding to the isospectral and nonisospectral flows will have the same evolution
of the reflection coefficient. Transformation (2.9) involves an integration (to obtain un). The
integration constant must be chosen so as to satisfy the following boundary conditions:

lim
|n|→∞

un = 0. (2.24)

In the case of the exceptional symmetries such an integration will provide an additional
symmetry and, moreover, the resulting symmetries will be defined up to integration constants.

Taking k = 0, 1, and 2 in equation (2.13) we obtain the first three isospectral symmetries
for the Toda system, namely:

an,ε0 = an(bn − bn+1) bn,ε0 = an−1 − an (2.25)

an,ε1 = an(b
2
n − b2

n+1 + an−1 − an+1)

bn,ε1 = an−1(bn + bn−1) − an(bn+1 + bn)
(2.26)

an,ε2 = an(b
3
n − b3

n+1 + anbn − 2an+1bn+1 + an−1bn−1 + 2an−1bn

−an+1bn+2 − anbn+1 − 2bn + 2bn+1)

bn,ε2 = an−1(b
2
n + b2

n−1 + bnbn−1 + an−1 + an−2 − 2)
−an(b

2
n + b2

n+1 + bnbn+1 + an+1 + an − 2).

(2.27)

The lowest nonisospectral symmetry is obtained from equation (2.17a), taking k = 0. It is

an,ν = an{t (b2
n − b2

n+1 + an−1 − an+1) + (2n + 3)bn+1 − (2n − 1)bn}
bn,ν = t{an−1(bn + bn−1) − an(bn+1 + bn)} + b2

n − 4 + 2[(n + 1)an − (n − 1)an−1].
(2.28)
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The exceptional symmetries (2.21) and (2.22) are

an,µ0 = 0 bn,µ0 = 1 (2.29)

an,µ1 = 2an + t ȧn bn,µ1 = bn + t ḃn. (2.30)

Definition (2.9) allows us to obtain the corresponding symmetries for the Toda equation:

un,ε0 = u̇n (2.31)

un,ε1 = u̇2
n + eun−1−un + eun−un+1 − 2 (2.32)

un,ε2 = u̇3
n − 2u̇n + eun−1−un(u̇n−1 + 2u̇n) + eun−un+1(u̇n+1 + 2u̇n) (2.33)

un,ν = t{u̇2
n + eun−1−un + eun−un+1 − 2} − (2n − 1)u̇n + wn(t) (2.34)

where wn(t) is defined by the following compatible system of equations:

wn+1(t) − wn(t) = −2u̇n+1 ẇn(t) = 2(eun−un+1 − 1). (2.35)

Under the assumption (2.24) we could integrate equations (2.35) and obtain a formal solution.
That is, we can write wn(t) in the form of an infinite sum:

wn(t) = 2
∞∑

j=n+1

u̇j + α (2.36)

whereα is an arbitrary integration constant which can be interpreted as an additional symmetry.
However, the additional freedom provided by the use of equations (2.35) instead of its solution,
given by equation (2.36), will be put to good use later in the calculation of the commutators
and will allow us to take continuous limits. The exceptional symmetries are

un,µ1 = t u̇n − 2n (2.37)

un,µ0 = t (2.38)

and the additional one, due to the integration, is

un,µ−1 = 1. (2.39)

In the case of the Volterra equation, we have

an,ε0 = an(an−1 − an+1) (2.40)

an,ε1 = an{an−1(an−2 + an−1 + an − 2) − an+1(an+2 + an+1 + an − 2)} (2.41)

an,ε2 = an{an−1[(an + an−1)(an−2 + an−1 + an − 2)

+an−2(an−3 + an−2 + an−1 − 2) − 2]

−an+1[(an+1 + an)(an+2 + an+1 + an − 2)

+an+2(an+3 + an+2 + an+1 − 2) − 2]} (2.42)

an,ν = an{t[an−1(an−2 + an−1 + an − 4) − an+1(an+2 + an+1 + an − 4)]

+an − (n − 1)an−1 + (n + 2)an+1 − 4} (2.43)

and the exceptional one

an,µ = an + t ȧn. (2.44)

In the case of the higher Volterra equation the isospectral symmetries are the same as
those ((2.40)–(2.42)) of the Volterra equations. The nonisospectral and exceptional ones are
different:

an,ν = an{an − (n − 1)an−1 + (n + 2)an+1 − 4 + 2t[an−1[an−2(an−3 + an−2 + an−1)

+(an−2 + an−1 + an)(an−1 + an − 7) + 12] − an+1[an+2(an+3 + an+2

+an+1) + (an+2 + an+1 + an)(an+1 + an − 7) + 12]]} (2.45)

an,µ = an{1 + 2t[an−1(an−2 + an−1 + an − 3) − an+1(an+2 + an+1 + an − 3)]}. (2.46)
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3. Commutation relations

To define the structure of the symmetry algebra for the Toda and Volterra hierarchies we need
to compute the commutation relations between the symmetries, i.e. the flows commuting with
the equations of the hierarchy. Apart from the exceptional cases, the proof that the symmetry
flows commute with the equations has been carried out using the one-to-one correspondence
between the integrable equations and the evolution equations for the reflection coefficients.
Without using this correspondence it would be extremely difficult to prove the existence of an
infinite denumerable number of symmetries.

In this section we extend the approach using the reflection coefficients to calculate the
commutation relations between the symmetries and thus to analyse the structure of the obtained
infinite-dimensional Lie algebra.

The first result is that the isospectral symmetry generators, provided by equations (2.13)
and (2.14) for the Toda system and Volterra equation, respectively, commute amongst each
other. If we define

Lk =
( L(k)

11 L(k)
12

L(k)
21 L(k)

22

)
(3.1)

we can write the generators for the isospectral symmetries

X̂T
k = {L(k)

11 [an(bn − bn+1)] + L(k)
12 (an−1 − an)}∂an+{L(k)

21 [an(bn − bn+1)]+L(k)
22 (an−1 − an)}∂bn

(3.2)

and

X̂V
k = L̃k[an(an−1 − an+1)]∂an (3.3)

for the Toda and Volterra hierarchies, respectively. The fact, proven in section 2, that
equations (2.13) and (2.14) provide symmetries for a generic equation of the Toda and Volterra
hierarchies, implies

[X̂k, X̂m] = 0. (3.4)

Indeed, the relation

d2R

dεk dεm
= d2R

dεm dεk
(3.5)

follows directly from equation (2.15). A natural way of representing the result given by
equation (3.5) is to introduce symmetry generators in the space of the reflection coefficients.
These generators are written as

X̂ T
k = µλkR∂R and X̂ V

k = µλ2k+1R∂R (3.6)

for the Toda and Volterra hierarchies, respectively. In agreement with Lie theory, whenever R
is an analytic function of ε, the corresponding flows are given by solving the equations

dR̃

dεk
= µλkR̃

dλ̃

dεk
= 0 R̃(εk = 0) = R λ̃(εk = 0) = λ (3.7)

for the Toda hierarchy, and

dR̃

dεk
= µλ2k+1R̃

dλ̃

dεk
= 0 R̃(εk = 0) = R λ̃(εk = 0) = λ (3.8)

for the Volterra one. These equations coincide with equation (2.15). In terms of the vector
fields X̂k , equation (3.5) is written as

[X̂k, X̂m] = [µλkR∂R, µλ
mR∂R] = 0. (3.9)
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So far, the use of the vector fields in the reflection coefficient space has just reexpressed a known
result, namely equation (3.5) is rewritten as equation (3.9). We now extend the use of vector
fields in the reflection coefficient space to the case of the nonisospectral symmetries (2.17a)
and (2.18a). Using the definition (3.1) we can introduce the generators of the nonisospectral
symmetries for the Toda and Volterra hierarchies. We restrict ourselves, for the sake of the
simplicity of exposition, to equations of the Toda and Volterra hierarchies for which there is
no explicit dependence on time. That is, we put

f1(λ, t) = λN g1(λ
2, t) = λ2N N ∈ Z+. (3.10)

This makes it possible to integrate equations (2.17b) and (2.18b) to obtain

f2 = λk+N−1[(1 + N)λ2 − 4N ]t g2 = λ2N+2k[(1 + N)λ2 − 2(2N + 1)]t. (3.11)

The symmetry vector fields for the Toda and Volterra hierarchies are now

Ŷ T
k = {t (1 + N)[L(k+N+1)

11 [an(bn − bn+1)] + L(k+N+1)
12 (an−1 − an)]

−4Nt[L(k+N−1)
11 [an(bn − bn+1)] + L(k+N−1)

12 (an−1 − an)]

+L(k)
11 [an((2n + 3)bn+1 − (2n − 1)bn)]

+L(k)
12 [b2

n − 4 + 2(n + 1)an − 2(n − 1)an−1]}∂an
+{t (1 + N)[L(k+N+1)

21 [an(bn − bn+1)] + L(k+N+1)
22 (an−1 − an)]

−4Nt[L(k+N−1)
21 [an(bn − bn+1)] + L(k+N−1)

22 (an−1 − an)]

+L(k)
21 [an((2n + 3)bn+1 − (2n − 1)bn)]

+L(k)
22 [b2

n − 4 + 2(n + 1)an − 2(n − 1)an−1]}∂bn (3.12)

and

Ŷ V
k = {tL̃k+N [(1 + N)L̃ − 2(1 + 2N)][an(an−1 − an+1)]

+L̃k[an(an − (n − 1)an−1 + (n + 2)an+1 − 4)]}∂an (3.13)

respectively. Taking into account equations (2.19), (2.20) and (3.11) we can define the
symmetry generators (3.12) and (3.13) in the reflection coefficient space, i.e.

ŶT
k = µλk+N−1t[(1 + N)λ2 − 4N ]R∂R + µ2λk∂λ (3.14)

ŶV
k = µλ2k+2N+1t[(1 + N)λ2 − 4N − 2]R∂R + 1

2µ
2λ2k+1∂λ. (3.15)

Commuting Ŷk with Ŷm we have

[ŶT
k , ŶT

m] = (m − k)[ŶT
k+m+1 − 4ŶT

k+m−1] (3.16)

[ŶV
k , ŶV

m ] = (m − k)[ŶV
k+m+1 − 4ŶV

k+m]. (3.17)

From the isomorphism between the spectral space and the space of the solutions, we
conclude that the vector fields representing the symmetries of the studied evolution equations
satisfy the same commutation relations. Hence we have

[Ŷ T
k , Ŷ T

m ] = (m − k)[Ŷ T
k+m+1 − 4Ŷ T

k+m−1] (3.18)

[Ŷ V
k , Ŷ V

m ] = (m − k)[Ŷ V
k+m+1 − 4Ŷ V

k+m]. (3.19)

In a similar manner we can work out the commutation relations between the Ŷk and X̂m

symmetry generators. We get

[X̂ T
k , ŶT

m] = −(1 + k)X̂ T
k+m+1 + 4kX̂ T

k+m−1 (3.20)

[X̂ V
k , ŶV

m ] = −(1 + k)X̂ V
k+m+1 + 2(2k + 1)X̂ V

k+m (3.21)
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and consequently

[X̂T
k , Ŷ

T
m ] = −(1 + k)X̂T

k+m+1 + 4kX̂T
k+m−1 (3.22)

[X̂V
k , Ŷ

V
m ] = −(1 + k)X̂V

k+m+1 + 2(2k + 1)X̂V
k+m. (3.23)

Let us now consider the commutation relations involving the exceptional symmetries (2.21)–
(2.23). As mentioned in section 2, these symmetries do not satisfy the asymptotic
conditions (2.5). Hence we cannot write them in the space of the reflection coefficient and
we cannot write them down simultaneously for all equations in the hierarchy. Consequently
we must consider each case separately. In the case of the Toda system (N = 0) we have two
exceptional symmetries Ẑ0, Ẑ1. Using equations (2.29) and (2.30) we write them as

ẐT
0 = ∂bn (3.24)

ẐT
1 = [2an + t ȧn]∂an + [bn + t ḃn]∂bn . (3.25)

We can then calculate explicitly the commutation relations involving ẐT
0 and ẐT

1 , X̂T
0 , X̂T

1 and
Ŷ T

0 . The nonzero commutation relations are

[X̂T
0 , Ẑ

T
1 ] = −X̂T

0 [ẐT
0 , Ẑ

T
1 ] = ẐT

0

[Ŷ T
0 , ẐT

0 ] = −2ẐT
1 [Ŷ T

0 , ẐT
1 ] = −Ŷ T

0 − 8ẐT
0 [X̂T

1 , Ẑ
T
0 ] = −2X̂T

0

[X̂T
1 , Ẑ

T
1 ] = −2X̂T

1 [X̂T
0 , Ŷ

T
0 ] = −X̂T

1 [X̂T
1 , Ŷ

T
0 ] = −2X̂T

2 + 4X̂T
0 .

(3.26)

In the case of the Toda equation we have (see equations (2.37) and (2.38))

ẐT E
0 = t∂un

(3.27)

ẐT E
1 = [t u̇n − 2n]∂un

(3.28)

and

ẐT E
−1 = ∂un

(3.29)

in correspondence with equation (2.39). The symmetries X̂T E
0 , X̂T E

1 and Ŷ T E
0 , according to

equations (2.31), (2.32) and (2.34), are given by

X̂T E
0 = u̇n∂un

X̂T E
1 = [u̇2

n + eun−1−un + eun−un+1 − 2]∂un

Ŷ T E
0 = {t[u2

n,t + eun−1−un + eun−un+1 − 2] − (2n − 1)un,t + wn(t)}∂un

wn+1(t) − wn(t) = −2u̇n+1 ẇn(t) = 2(eun−un+1 − 1).

(3.30)

The nonzero commutation relations are

[X̂T E
0 , ẐT E

0 ] = −ẐT E
−1 [X̂T E

0 , ẐT E
1 ] = −X̂T E

0

[X̂T E
0 , Ŷ T E

0 ] = −X̂T E
1 + ωẐTE

−1

[X̂T E
1 , ẐT E

0 ] = −2X̂T E
0 [X̂T E

1 , ẐT E
1 ] = −2X̂T E

1 − 4ẐT E
−1

[X̂T E
1 , Ŷ T E

0 ] = −2X̂T E
2 + 4X̂T E

0 + σẐTE
−1

[Ŷ T E
0 , ẐT E

−1 ] = βẐTE
−1 [Ŷ T E

0 , ẐT E
0 ] = −2ẐT E

1 + γ ẐTE
−1

[Ŷ T E
0 , ẐT E

1 ] = −Ŷ T E
0 − 8ẐT E

0 + δẐTE
−1 [ẐT E

0 , ẐT E
1 ] = ẐT E

0

(3.31)

where (β, γ, δ, ω, σ ) are integration constants. Notice that the presence of these integration
constants indicates that the symmetry algebra of the Toda equation is not completely specified.
The constants appear whenever the symmetry Ŷ T E

0 is involved. The ambiguity is related to the
ambiguity in the definition of Ŷ T E

0 itself, i.e. in the solution of equations (3.30) for wn(t). To
remove this ambiguity, supplementary conditions must be involved. In section 4 we shall see
that all the constants are specified by requiring that one obtains the correct continuous limit.
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In the case of the equations of the Volterra hierarchy we have only one exceptional
symmetry. For the Volterra equation it is (see equation (2.44))

ẐV = [an + t ȧn]∂an . (3.32)

From equations (2.40) and (2.43) we obtain the lowest symmetries in the X̂ and Ŷ series.
Commuting explicitly, we obtain

[ẐV , X̂V
0 ] = X̂V

0 [ẐV , Ŷ V
0 ] = Ŷ V

0 + 4ẐV [ẐV , X̂V
1 ] = 2(X̂V

0 + X̂V
1 )

[Ŷ V
0 , X̂V

0 ] = X̂V
1 − 2X̂V

0 [Ŷ V
0 , X̂V

1 ] = 2X̂V
2 − 6X̂V

1 .
(3.33)

For the higher Volterra we have

ẐHV = an{1 + 2t[an−1(an + an−1 + an−2 − 3) − an+1(an + an+1 + an+2 − 3)]}∂an (3.34)

and we obtain

[ẐHV , X̂HV
0 ] = X̂HV

0 [ẐHV , Ŷ HV
0 ] = Ŷ HV

0 + 4ẐHV

[Ŷ HV
0 , X̂HV

0 ] = X̂HV
1 − 2X̂HV

0 [Ŷ HV
0 , X̂HV

1 ] = 2X̂HV
2 − 6X̂HV

1

[ẐHV , X̂HV
1 ] = 2(X̂HV

0 + X̂HV
1 ).

(3.35)

The generators Ŷk and Ŷk (see equations (3.12)–(3.15)) depend on the number N , which
enumerates equations in the hierarchy. Interestingly, the commutation relations involving the
generators X̂ and Ŷ are the same for all N (see equations (3.4), (3.9) and (3.16)–(3.23)).

The commutation relations obtained above determine the structure of the infinite-
dimensional Lie symmetry algebras. For the Toda system the first symmetry generators are
given in equations (3.2), (3.12), (3.24) and (3.25) and the corresponding commutation relations
are given by equations (3.18), (3.22) and (3.26). As one can see, the symmetry operators Ŷk

and Ẑk are linear in t and its coefficient is an isospectral symmetry X̂k . Consequently, as the
operators X̂k commute among themselves, the commutator of X̂m with any of the Ŷk or Ẑk

symmetries will not have any explicit time dependence and thus can be written in terms of X̂n

only. The structure of the Lie algebra for the Toda system can be written as

L = L0⊃+L1 L0 = {ĥ, ê, f̂ , Ŷ T
1 , Ŷ T

2 , . . .} L1 = {X̂T
0 , X̂

T
1 , . . .} (3.36)

where {ĥ = ẐT
1 , ê = ẐT

0 , f̂ = Ŷ T
0 + 4ẐT

0 } denotes a sl(2, R) subalgebra with [ĥ, ê] = ê,
[ĥ, f̂ ] = −f̂ , [ê, f̂ ] = 2ĥ. The algebra L0 is perfect, i.e., we have [L0, L0] = L0. Let us
point out that ẐT

0 , Ẑ
T
1 and X̂T

0 are point symmetries, all others are generalized symmetries.
For the Toda equation the point transformations are X̂T E

0 , ẐT E
0 and ẐT E

1 , as for the Toda
system, plus the additional ẐT E

−1 . Taking into account equations (3.27)–(3.31), the structure

of the Lie algebra is as in equations (3.36) with L0 = {ẐT E
0 , ẐT E

1 , Ŷ T E
0 , Ŷ T E

1 , Ŷ T E
2 , . . .}

and L1 = {ẐT E
−1 , X̂

T E
0 , X̂T E

1 , X̂T E
2 , . . .}. The algebra L has a finite-dimensional subalgebra

{ẐT E
0 , ẐT E

1 , Ŷ T E
0 , ẐT E

−1 } isomorphic to gl(2, R) ∼ {ẐT E
0 , ẐT E

1 , Ŷ T E
0 } ⊕ {ẐT E

−1 }. The element

ẐT E
−1 is in the centre of L and L0 is a perfect Lie algebra.

For the Volterra equation X̂V
0 and ẐV are point symmetries. All the other symmetries are

higher ones. Taking into account equations (3.3), (3.13), (3.32) and (3.33), the structure of the
Lie algebra is again L = L0⊃+L1 with L0 = {ẐV , Ŷ V

0 , Ŷ V
1 , Ŷ V

2 , . . .} and L1 = {X̂V
0 , X̂V

1 , . . .}.
For the higher Volterra equation X̂HV

i are as in equation (3.3); Ŷ HV
0 and ẐHV are somewhat

different (see equation (3.13) with N = 1 and k = 0 and (3.34)). The commutation
relations (3.35), and hence the structure of the Lie algebra, are the same as for the Volterra
equation.
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4. Contraction of the symmetry algebras in the continuous limit

It is well known [16, 17, 28] that the Toda equation has the potential Korteweg–de Vries
equation as a continuous limit. The limit for the Volterra and higher Volterra equation is the
Korteweg–de Vries equation itself. In the following we will consider each case separately.

4.1. The Toda equation

Let us consider the Toda equation (1.2). By setting

un(t) = − 1
2hv(x, τ ) (4.1)

x = (n − t)h (4.2)

τ = − 1
24h

3t (4.3)

we can write equation (1.2) as

(vτ − vxxx − 3v2
x)x = O(h2) (4.4)

i.e., the once differentiated potential Korteweg–de Vries equation. Let us now rewrite the
symmetry generators in the new coordinate system defined by (4.1)–(4.3) and develop them
for small h in Taylor series. We have

X̂T E
0 = {−vx(x, τ )h − 1

24vτ (x, τ )h
3}∂v (4.5)

X̂T E
1 = {−2vx(x, τ )h − 1

3vτ (x, τ )h
3 + O(h5)}∂v (4.6)

X̂T E
2 = {−4vx(x, τ )h − 7

6vτ (x, τ )h
3 + O(h5)}∂v (4.7)

Ŷ T E
0 = {2[v(x, τ ) + xvx(x, τ ) + 3τvτ (x, τ )] + O(h)}∂v (4.8)

ẐT E
−1 = − 2

h
∂v (4.9)

ẐT E
0 = 48

h4
τ∂v (4.10)

ẐT E
1 =

{
−96

h4
τ +

4

h2
[x + 6τvx(x, τ )] + O(1)

}
∂v. (4.11)

To obtain equations (4.6)–(4.8) we impose the condition that v satisfies the potential Korteweg–
de Vries equation

vτ = vxxx + 3v2
x. (4.12)

The point symmetry generators, written in the evolutionary form, for the potential Korteweg–de
Vries equation (4.12) are

P̂0 = vτ (x, τ )∂v (4.13)

P̂1 = vx(x, τ )∂v (4.14)

B̂ = [x + 6τvx(x, τ )]∂v (4.15)

D̂ = [v(x, τ ) + xvx(x, τ ) + 3τvτ (x, τ )]∂v (4.16)

9̂ = ∂v (4.17)
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and their commutation table is

P̂0 P̂1 B̂ D̂ 9̂

P̂0 0 0 −6P̂1 −3P̂0 0

P̂1 0 −9̂ −P̂1 0

B̂ 0 2B̂ 0

D̂ 0 −9̂

9̂ 0

(4.18)

We can write some symmetry generators for the Toda equation, obtained as linear combinations
of the generators (4.5)–(4.11), such that in the continuous limit they go into the generators of
point symmetries of the potential Korteweg–de Vries equation:

P̃0 = 4

h3
(2X̂T E

0 − X̂T E
1 ) (4.19)

P̃1 = − 1

h
X̂TE

0 (4.20)

B̃ = h2

4
(2ẐT E

0 + ẐT E
1 ) (4.21)

D̃ = 1
2 Ŷ

T E
0 (4.22)

9̃ = −h

2
ẐT E

−1 . (4.23)

Taking into account the commutation table between the generators X̂T E
0 , X̂T E

1 , ẐT E
−1 , ẐT E

0 ,

ẐT E
1 and Ŷ T E

0 , given by (3.31), and the continuous limit of X̂T E
2 , given by equation (4.7), we

get:

P̃0 P̃1 B̃ D̃ 9̃

P̃0 0 0 −6P̃1 + O(h2) −3P̃0 + O(h2) 0
P̃1 0 −9̃ + O(h2) −P̃1 + O(h2) 0
B̃ 0 2B̃ + O(h2) 0
D̃ 0 −9̃

9̃ 0

(4.24)

To get the results contained in (4.24) we had to require that β = −2, 2γ + δ = 0,
and ω = σ = 0 in equations (3.31). Thus, we have reobtained, in the continuous limit,
all point symmetries of the potential KdV equation. The limit partially fixes the previously
undetermined constants in equations (3.31).

An important observation is that, to obtain all the point symmetries of the potential KdV
equation, we need not only the point symmetries X̂T E

0 , ẐT E
0 , ẐT E

−1 and ẐT E
1 of the Toda equation

but also the higher symmetries X̂T E
1 , Ŷ T E

0 .
The x-differentiated potential KdV equation (4.4) has a further set of point symmetries,

namely f (τ)∂v , where f (τ) is an arbitrary function of time. They simply reflect the fact that,
if v(x, τ ) is a solution, then so is w(x, τ) = v(x, τ ) + f (τ). These symmetries are of no
particular interest. To obtain them, we would have to consider limits of higher symmetries of
the Toda equation (in the Ŷ T E

k series). Moreover, to obtain the symmetries (4.5)–(4.11) we
have used equation (4.12), rather than the differentiated equation (4.4).
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4.2. The Volterra and higher Volterra equations

Let us consider the Volterra equation (1.3). By setting

an(t) = 1 + h2q(x, τ ) (4.25)

x = (n − 2t)h (4.26)

τ = − 1
3h

3t (4.27)

we can write equation (1.3) as

qτ = qxxx + 6qqx + O(h2) (4.28)

i.e., the Korteweg–de Vries equation. Let us now rewrite the symmetry generators in the new
coordinate system defined by (4.25)–(4.27) and develop them in a Taylor series for small h.
We have

X̂V
0 = {−2hqx(x, τ ) − 1

3h
3qτ (x, τ )}∂q (4.29)

X̂V
1 = {−8hqx(x, τ ) − 10

3 h3qτ (x, τ ) + O(h5)}∂q (4.30)

Ŷ V
0 = {2[2q(x, τ ) + xqx(x, τ ) + 3τqτ (x, τ )] + O(h)}∂q (4.31)

ẐV =
{

1

h2
[1 + 6τqx(x, τ )] + O(1)

}
∂q. (4.32)

The symmetry generators, written in the evolutionary form, for the Korteweg–de Vries
equation (4.28) are

P̂0 = qτ (x, τ )∂q (4.33)

P̂1 = qx(x, τ )∂q (4.34)

B̂ = [1 + 6τqx(x, τ )]∂q (4.35)

D̂ = [2q(x, τ ) + xqx(x, τ ) + 3τqτ (x, τ )]∂q (4.36)

and their commutation table is

P̂0 P̂1 B̂ D̂

P̂0 0 0 −6P̂1 −3P̂0

P̂1 0 0 −P̂1

B̂ 0 2B̂

D̂ 0

(4.37)

We can write down some new symmetry generators for the Volterra equation, obtained as linear
combinations of the generators (4.29)–(4.32), such that in the continuous limit they go over to
the point symmetry generators of the Korteweg–de Vries equation:

P̃0 = 1

2h3
(4X̂V

0 − X̂V
1 ) (4.38)

P̃1 = 1

12h
(X̂V

1 − 10X̂V
0 ) (4.39)

D̃ = 1
2 Ŷ

V
0 (4.40)

B̃ = h2ẐV . (4.41)

Taking into account the commutation table between the generators X̂V
0 , X̂V

1 , ẐV and Ŷ V
0 , (3.23)

and (3.33) and the fact that the continuous limit of X̂V
2 is given by

X̂V
2 = [−32hqx(x, τ ) − 64

3 h3qτ (x, τ ) + O(h5)]∂q (4.42)
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we get

P̃0 P̃1 B̃ D̃

P̃0 0 0 −6P̃1 + O(h2) −3P̃0 + O(h2)

P̃1 0 O(h4) −P̃1 + O(h2)

B̃ 0 2B̃ + O(h2)

D̃ 0

(4.43)

Comparing the commutation tables (4.15) and (4.21) we see that the infinite-dimensional Lie
algebra generated by X̂V

0 , X̂V
1 , ẐV and Ŷ V

0 , reduces, in the continuous limit, when h goes to 0,
to the Lie algebra of the point symmetries of the Korteweg–de Vries equation.

In the case of the higher Volterra equation (1.4), the Korteweg–de Vries equation (4.28)
is obtained by setting

an(t) = 1 + h2q(x, τ ) (4.44)

x = nh (4.45)

τ = −2h3t. (4.46)

Let us now rewrite the symmetry generators in the new coordinate system, defined by
equations (4.44)–(4.46), and develop them for small h in a Taylor series. We get the same
representation in terms of the symmetry generators of the Korteweg–de Vries equation as for
the Volterra equation. So the contraction table is the same.

5. Conclusions

There are several general conclusions to be drawn from this study. The main one is that, if we
wish to study symmetries of difference equations on a fixed and untransformable lattice and
wish to obtain all symmetries that exist in the continuous limit, then generalized symmetries
must be considered together with point ones. For the Toda system, the Toda equation and
the two Volterra equations studied above, we always observed the same patterns. Namely,
the linear tools of integrability theory provide us with the infinite-dimensional Lie algebra of
symmetries of the discrete equations considered. This algebra includes a very small subalgebra
of point transformations. In the continuous limit, when we take the spacing parameter h to
0, the structure of the Lie algebra changes. After the contraction h → 0 it is still infinite-
dimensional and still includes both generalized and point symmetries. However, a set of
elements of the symmetry algebra of the discrete equation, that include point and generalized
symmetries, contracts into purely point symmetries of the corresponding differential equation.
For the Toda equation this is demonstrated in equations (4.19)–(4.24), and for the Volterra
equation in equations (4.38)–(4.43).

We remark that, while Lie algebra contractions have many applications in physics [4],
to our knowledge this is the first case when contractions of infinite-dimensional Lie algebras
occur.

Another general result demonstrated in this paper is that for integrable equations, be they
discrete, or continuous, it is very advantageous to analyse symmetries in the space of spectral
data, and then to transfer the results into the usual phase space. This was done in section 3 when
we calculated commutation relations for symmetries of the Toda and Volterra hierarchies.

A question that immediately arises is: how does one find and use symmetries of
nonintegrable difference equations, when no linear system is available? One possibility is
to give up the notion of a fixed lattice, i.e. study group transformations acting simultaneously
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on the equations and on the lattice. For instance, dilations of coordinates will change the scale
of the lattice. This approach has been taken by Dorodnitsyn and collaborators [6, 7].

Another approach is the differential equation method proposed earlier [19]. Here one
views a differential–difference equation as an infinite set of differential equations and looks
for point symmetries of this infinite system. These will include some, through not necessarily
all, generalized symmetries of the differential–difference equation under study. The problem
here is that it is often very difficult to solve the corresponding infinite set of determining
equations.

Finally, we mention the intrinsic method [19] which is the simplest to apply and use, and
which provides us with the point symmetries of the discrete equation (on a fixed lattice).
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